Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Ethyl 4-acetyl-5-oxo-3-phenylhexanoate

#### Hongwei Wang and Yimin Hu\*

College of Chemistry and Materials Science, Anhui Key Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China

Correspondence e-mail: yiminhu@yahoo.cn

Received 21 February 2011; accepted 13 March 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.099; data-to-parameter ratio = 16.4.

The reaction of ethyl 3-bromo-3-phenylpropanoate with pentane-2,4-dione, in the presence of palladium(II) acetate and triphenvlphosphine, in dimethylformamide, unexpectedly gave the title product,  $C_{16}H_{20}O_4$ . The molecule contains one chiral C atom but the crystal is racemic. In the crystal, neighboring molecules form a chain along [100] through three weak C-H···O interactions. Furthermore, a double-stranded structure is formed through weak C-H···O interactions between two parallel chains.

#### **Related literature**

For Pd-catalysed coupling reactions, see: Hu et al. (2008); Hu, Ouvang et al. (2009); Hu, Yu et al. (2009). For the biological activity of pentane-2,4-dione derivatives, see: Vijaikumar & Pitchumani (2010). For related structures, see: Hu, Lin et al. (2010); Hu, Ren et al. (2010).



#### **Experimental**

Crystal data C16H20O4

 $M_r = 276.32$ 

| Triclinic, P1                 |  |
|-------------------------------|--|
| a = 5.8213 (11)  Å            |  |
| b = 7.7638 (18)  Å            |  |
| c = 17.8532 (15) Å            |  |
| $\alpha = 80.973 (2)^{\circ}$ |  |
| $\beta = 88.977 (3)^{\circ}$  |  |
| $\gamma = 75.033 (2)^{\circ}$ |  |

#### Data collection

| Bruker SMART APEX CCD                  | 8564 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 3033 independent reflections           |
| Absorption correction: multi-scan      | 1726 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2000)                 | $R_{\rm int} = 0.050$                  |
| $T_{\min} = 0.977, \ T_{\max} = 0.982$ |                                        |
|                                        |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | 185 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.099$               | H-atom parameters constrained                              |
| S = 1.07                        | $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$  |
| 3033 reflections                | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------|------|-------------------------|--------------|---------------------------|
| $C6-H6\cdots O1^{i}$     | 0.93 | 2.63                    | 3.534 (2)    | 165                       |
| $C8 - H8B \cdots O1^{i}$ | 0.97 | 2.70                    | 3.525 (2)    | 144                       |
| $C12-H12\cdots O1^{i}$   | 0.98 | 2.46                    | 3.387 (2)    | 157                       |
| $C14-H14C\cdots O4^{ii}$ | 0.96 | 2.72                    | 3.405 (2)    | 129                       |

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the National Science Foundation of China (project Nos. 21072003 and 20872002) for financial support for this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2342).

#### References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hu, Y.-M., Lin, X.-G., Zhu, T., Wan, J., Sun, Y.-J., Zhao, Q. S. & Yu, T. (2010). Synthesis, 42, 3467-3473.
- Hu, Y.-M., Ouyang, Y., Qu, Y., Hu, Q. & Yao, H. (2009). Chem. Commun. pp. 4575-4577.
- Hu, Y.-M., Ren, D., Zhang, L.-D., Lin, X.-G. & Wang, J. (2010). Eur. J. Org. Chem. 23, 4454-4459.
- Hu, Y.-M., Song, F.-F., Wu, F.-H., Cheng, D. & Wang, S. (2008). Chem. Eur. J. 14, 3110-3117.
- Hu, Y.-M., Yu, C.-L., Ren, D., Hu, Q., Zhang, L.-D. & Cheng, D. (2009). Angew. Chem. Int. Ed. 48, 5448-5451.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vijaikumar, S. & Pitchumani, K. (2010). Indian J. Chem. Sect. B, 49, 469-474.

### organic compounds

V = 769.6 (2) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.28 \times 0.24 \times 0.22 \text{ mm}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ T = 291 K

7 - 2

#### Acta Cryst. (2011). E67, o919 [doi:10.1107/S160053681100955X]

#### Ethyl 4-acetyl-5-oxo-3-phenylhexanoate

#### H. Wang and Y. Hu

#### Comment

Palladium-catalyzed coupling reactions have become an important tool in modern organic synthesis chemistry (Hu *et al.* 2008). They have made a wide variety of active pharmaceutical ingredients, natural substances and other complex organic molecules economically accessible (Hu & Yu *et al.*, 2009; Hu, Ouyang *et al.*, 2009). The pentane-2,4-dione derivatives, which have physiological activity, are effective intermediates in the synthesis of many complex natural products (Vijaikumar & Pitchumani, 2010). We have reported some novel palladium-catalyzed intermolecular and intramolecular reactions of aryl halides with the olefins and diynes (Hu, Lin *et al.*, 2010; Hu, Ren *et al.*, 2010). The reaction of ethyl 3-bromo-3-phenylpropanoate with pentane-2,4-dione, in the presence of palladium(II) acetate and triphenylphosphine, in DMF at 373 K for 22 h, gave the unexpected title product.

The molecular structure of the title compound,  $C_{16}H_{20}O_4$ , reveals that all the bond lengths and angles have normal values. As shown in Fig. 1, one chiral carbon, C7, was observed in the molecule. Due to the existence of inversion centers in the crystal packing, the C7 atoms exhibit *R*-conformation in the half of the molecules, and display *S*-conformation in the other half of the molecules. So the whole crystal is racemic (Fig. 4). In the crystal packing, the weak C—H···O interactions play important roles. Neighboring molecules form a one dimensional chain through the weak C6—H6···O1<sup>ii</sup>, C8—H8b···O1<sup>ii</sup> and C12—H12···O1<sup>ii</sup> (ii: 1+x, y, z) interactions (Fig. 2). Furthermore, two neighboring chains are parallel to each other to form a double-stranded structure through the weak C14—H14C···O4<sup>i</sup> (i: 2-x, 1-y, 1-z) interactions (Fig. 3).

#### **Experimental**

An oven-dried Schlenk flask was evacuated, filled with nitrogen, and then charged with pentane-2,4-dione (1.00 g, 10 mmol), ethyl-3-bromo-3-phenylpropanoate (2.82 g, 11 mmol), tributylamine (3 ml), PPh<sub>3</sub> (52.5 mg, 0.2 mmol), Pd(OAc)<sub>2</sub> (24 mg, 0.1 mmol), and DMF (10 ml) to give a yellow solution. The reaction mixture was heated at 373 K with stirring. The reaction mixture was cooled to room temperature after 22 h and the resulting yellow-orange mixture was diluted with Et<sub>2</sub>O (10 ml). The mixture was washed with H<sub>2</sub>O (15 ml) and the aqueous layer was extracted with Et<sub>2</sub>O (20 ml). The combined organic layers were dried (MgSO<sub>4</sub>), filtered, and concentrated *in vacuo*. The crude material was purified by flash column chromatography on silica gel (petroleum ether:EtOAc, 9:1) and recrystallized from EtOAc, yield 2.27 g (82%). Colorless crystals suitable for X-ray diffraction were obtained by recrystallization from a solution of the title compound from ethyl acetate, over a period of one week.

#### Refinement

H atoms were positioned geometrically and refined using a riding model (including free rotation about the methyl C—C bond), with C—H = 0.93–0.97 Å and with  $U_{iso}(H) = 1.2$  (1.5 for methyl groups) times  $U_{eq}(\text{carrier C})$ .

Figures



### Ethyl 4-acetyl-5-oxo-3-phenylhexanoate

| Crystal data                    |                                                       |
|---------------------------------|-------------------------------------------------------|
| $C_{16}H_{20}O_4$               | Z = 2                                                 |
| $M_r = 276.32$                  | F(000) = 296                                          |
| Triclinic, <i>P</i> T           | $D_{\rm x} = 1.192 \ {\rm Mg \ m}^{-3}$               |
| Hall symbol: -P 1               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 5.8213 (11)  Å              | Cell parameters from 3519 reflections                 |
| b = 7.7638 (18)  Å              | $\theta = 2.2 - 23.2^{\circ}$                         |
| c = 17.8532 (15)  Å             | $\mu = 0.09 \text{ mm}^{-1}$                          |
| $\alpha = 80.973 \ (2)^{\circ}$ | T = 291  K                                            |
| $\beta = 88.977 \ (3)^{\circ}$  | Block, colourless                                     |
| $\gamma = 75.033 \ (2)^{\circ}$ | $0.28 \times 0.24 \times 0.22 \text{ mm}$             |
| $V = 769.6 (2) \text{ Å}^3$     |                                                       |

#### Data collection

| Bruker SMART APEX CCD<br>diffractometer                              | 3033 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: sealed tube                                        | 1726 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.050$                                                     |
| $\phi$ and $\omega$ scans                                            | $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2000) | $h = -7 \rightarrow 7$                                                    |
| $T_{\min} = 0.977, \ T_{\max} = 0.982$                               | $k = -9 \rightarrow 9$                                                    |
| 8564 measured reflections                                            | $l = -21 \rightarrow 21$                                                  |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                                                                    |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                        | H-atom parameters constrained                                                                                                                           |
| $wR(F^2) = 0.099$                                      | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.03P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                                                                 |
| <i>S</i> = 1.07                                        | $(\Delta/\sigma)_{max} < 0.001$                                                                                                                         |
| 3033 reflections                                       | $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$                                                                                                   |
| 185 parameters                                         | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$                                                                                              |
| 0 restraints                                           | Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| 0 constraints                                          | Extinction coefficient: 0.017 (3)                                                                                                                       |
| Drimory atom site logation: structure inverient direct |                                                                                                                                                         |

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | У          | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|------------|--------------|---------------------------|
| C1  | 0.9743 (3) | 0.8135 (3) | 0.22191 (11) | 0.0424 (5)                |
| C2  | 0.8295 (4) | 0.7260 (3) | 0.19182 (11) | 0.0473 (5)                |
| H2  | 0.7199     | 0.6823     | 0.2226       | 0.057*                    |
| C3  | 0.8438 (4) | 0.7019 (3) | 0.11675 (11) | 0.0463 (5)                |
| Н3  | 0.7450     | 0.6411     | 0.0978       | 0.056*                    |
| C4  | 1.0006 (4) | 0.7658 (3) | 0.07023 (12) | 0.0464 (5)                |
| H4  | 1.0075     | 0.7507     | 0.0195       | 0.056*                    |
| C5  | 1.1474 (3) | 0.8521 (3) | 0.09850 (11) | 0.0463 (5)                |
| Н5  | 1.2557     | 0.8957     | 0.0671       | 0.056*                    |
| C6  | 1.1361 (3) | 0.8750 (3) | 0.17330 (11) | 0.0436 (5)                |
| Н6  | 1.2389     | 0.9329     | 0.1920       | 0.052*                    |
| C7  | 0.9534 (4) | 0.8488 (3) | 0.30314 (11) | 0.0411 (5)                |
| H7  | 0.8304     | 0.7949     | 0.3272       | 0.049*                    |
| C8  | 0.8736 (3) | 1.0549 (3) | 0.30396 (11) | 0.0400 (5)                |
| H8A | 0.8589     | 1.0774     | 0.3560       | 0.048*                    |

| H8B  | 0.9929     | 1.1111       | 0.2802       | 0.048*     |
|------|------------|--------------|--------------|------------|
| C9   | 0.6410 (3) | 1.1362 (3)   | 0.26269 (11) | 0.0411 (5) |
| C10  | 0.4381 (4) | 1.3543 (3)   | 0.16176 (11) | 0.0488 (5) |
| H10A | 0.4133     | 1.4844       | 0.1540       | 0.059*     |
| H10B | 0.3032     | 1.3256       | 0.1887       | 0.059*     |
| C11  | 0.4545 (4) | 1.2916 (3)   | 0.08822 (11) | 0.0470 (5) |
| H11A | 0.5764     | 1.3323       | 0.0593       | 0.070*     |
| H11B | 0.3048     | 1.3394       | 0.0612       | 0.070*     |
| H11C | 0.4931     | 1.1621       | 0.0960       | 0.070*     |
| C12  | 1.1855 (3) | 0.7662 (3)   | 0.34946 (11) | 0.0409 (5) |
| H12  | 1.3046     | 0.8279       | 0.3281       | 0.049*     |
| C13  | 1.2830 (3) | 0.5652 (3)   | 0.34769 (11) | 0.0441 (5) |
| C14  | 1.1213 (4) | 0.4433 (3)   | 0.36507 (12) | 0.0490 (5) |
| H14A | 1.2115     | 0.3200       | 0.3675       | 0.074*     |
| H14B | 1.0003     | 0.4717       | 0.3259       | 0.074*     |
| H14C | 1.0483     | 0.4599       | 0.4130       | 0.074*     |
| C15  | 1.1577 (4) | 0.7879 (3)   | 0.43302 (12) | 0.0498 (5) |
| C16  | 1.3691 (4) | 0.8014 (3)   | 0.47412 (12) | 0.0471 (5) |
| H16A | 1.3837     | 0.9232       | 0.4638       | 0.071*     |
| H16B | 1.5089     | 0.7214       | 0.4577       | 0.071*     |
| H16C | 1.3520     | 0.7683       | 0.5276       | 0.071*     |
| 01   | 0.4638 (2) | 1.0866 (2)   | 0.27737 (8)  | 0.0483 (4) |
| O2   | 0.6542 (2) | 1.2691 (2)   | 0.20664 (8)  | 0.0509 (4) |
| O3   | 1.4918 (2) | 0.50694 (19) | 0.33553 (7)  | 0.0458 (4) |
| O4   | 0.9718 (2) | 0.7909 (2)   | 0.46421 (8)  | 0.0488 (4) |
|      |            |              |              |            |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0433 (11) | 0.0391 (11) | 0.0406 (10) | -0.0055 (9)  | -0.0051 (8)  | -0.0021 (8)  |
| C2  | 0.0545 (12) | 0.0471 (13) | 0.0438 (11) | -0.0141 (10) | -0.0010 (9)  | -0.0156 (9)  |
| C3  | 0.0473 (12) | 0.0497 (12) | 0.0450 (11) | -0.0135 (10) | -0.0033 (9)  | -0.0146 (9)  |
| C4  | 0.0454 (11) | 0.0485 (12) | 0.0480 (12) | -0.0147 (10) | -0.0068 (9)  | -0.0103 (9)  |
| C5  | 0.0433 (12) | 0.0503 (13) | 0.0472 (12) | -0.0173 (10) | 0.0016 (9)   | -0.0047 (9)  |
| C6  | 0.0412 (11) | 0.0426 (12) | 0.0476 (12) | -0.0110 (9)  | -0.0007 (9)  | -0.0080 (9)  |
| C7  | 0.0464 (11) | 0.0380 (11) | 0.0403 (11) | -0.0132 (9)  | 0.0007 (8)   | -0.0061 (8)  |
| C8  | 0.0374 (10) | 0.0419 (11) | 0.0428 (11) | -0.0108 (9)  | 0.0021 (8)   | -0.0122 (9)  |
| C9  | 0.0432 (12) | 0.0350 (11) | 0.0471 (11) | -0.0120 (9)  | 0.0015 (9)   | -0.0095 (8)  |
| C10 | 0.0559 (13) | 0.0427 (12) | 0.0440 (11) | -0.0128 (10) | -0.0086 (9)  | 0.0062 (9)   |
| C11 | 0.0435 (11) | 0.0469 (12) | 0.0532 (12) | -0.0131 (9)  | -0.0146 (9)  | -0.0118 (10) |
| C12 | 0.0341 (10) | 0.0470 (12) | 0.0445 (11) | -0.0182 (9)  | 0.0047 (8)   | -0.0034 (9)  |
| C13 | 0.0344 (11) | 0.0526 (12) | 0.0452 (11) | -0.0115 (9)  | 0.0020 (8)   | -0.0066 (9)  |
| C14 | 0.0525 (13) | 0.0453 (13) | 0.0474 (12) | -0.0148 (10) | 0.0069 (9)   | 0.0013 (10)  |
| C15 | 0.0417 (12) | 0.0572 (14) | 0.0509 (12) | -0.0127 (10) | -0.0015 (10) | -0.0095 (10) |
| C16 | 0.0522 (12) | 0.0447 (11) | 0.0487 (11) | -0.0125 (10) | -0.0114 (9)  | -0.0183 (9)  |
| 01  | 0.0402 (8)  | 0.0558 (9)  | 0.0467 (8)  | -0.0135 (7)  | -0.0032 (6)  | 0.0010 (7)   |
| O2  | 0.0538 (9)  | 0.0545 (9)  | 0.0414 (8)  | -0.0152 (7)  | -0.0036 (6)  | 0.0040 (7)   |
| 03  | 0.0435 (8)  | 0.0476 (9)  | 0.0474 (8)  | -0.0082 (6)  | 0.0065 (6)   | -0.0177 (6)  |

| O4              | 0.0493 (9)    | 0.0499 (9)  | 0.0495 (8) | -0.0138 (7)   | 0.0131 (7) | -0.0142 (7) |
|-----------------|---------------|-------------|------------|---------------|------------|-------------|
| Geometric param | neters (Å, °) |             |            |               |            |             |
| C1-C2           |               | 1 374 (3)   | (          | 210-02        |            | 1 450 (2)   |
| C1 - C6         |               | 1 393 (3)   | (          | C10—C11       |            | 1 464 (3)   |
| C1—C7           |               | 1 515 (3)   | (          | C10—H10A      |            | 0 9700      |
| C2-C3           |               | 1 380 (3)   | (          | C10—H10B      |            | 0 9700      |
| C2—H2           |               | 0.9300      | (          | C11—H11A      |            | 0.9600      |
| C3—C4           |               | 1.359 (3)   | (          | С11—Н11В      |            | 0.9600      |
| С3—Н3           |               | 0.9300      | (          | С11—Н11С      |            | 0.9600      |
| C4—C5           |               | 1.360 (3)   | (          | C12—C13       |            | 1.522 (3)   |
| C4—H4           |               | 0.9300      | (          | C12—C15       |            | 1.528 (3)   |
| С5—С6           |               | 1.373 (3)   | (          | С12—Н12       |            | 0.9800      |
| С5—Н5           |               | 0.9300      | (          | C13—O3        |            | 1.211 (2)   |
| С6—Н6           |               | 0.9300      | (          | C13—C14       |            | 1.495 (3)   |
| C7—C12          |               | 1.532 (3)   | (          | C14—H14A      |            | 0.9600      |
| С7—С8           |               | 1.549 (3)   | (          | C14—H14B      |            | 0.9600      |
| С7—Н7           |               | 0.9800      | (          | C14—H14C      |            | 0.9600      |
| С8—С9           |               | 1.491 (3)   | (          | C15—O4        |            | 1.205 (2)   |
| C8—H8A          |               | 0.9700      | (          | C15—C16       |            | 1.479 (3)   |
| C8—H8B          |               | 0.9700      | (          | C16—H16A      |            | 0.9600      |
| С9—О1           |               | 1.202 (2)   | (          | С16—Н16В      |            | 0.9600      |
| С9—О2           |               | 1.337 (2)   | (          | С16—Н16С      |            | 0.9600      |
| C2—C1—C6        |               | 116.86 (19) | (          | С11—С10—Н10А  |            | 109.6       |
| C2—C1—C7        |               | 121.89 (19) | (          | D2—C10—H10B   |            | 109.6       |
| C6—C1—C7        |               | 121.21 (19) | (          | С11—С10—Н10В  |            | 109.6       |
| C1—C2—C3        |               | 121.2 (2)   | H          | H10A—C10—H10B |            | 108.1       |
| C1—C2—H2        |               | 119.4       | (          | C10—C11—H11A  |            | 109.5       |
| С3—С2—Н2        |               | 119.4       | (          | С10—С11—Н11В  |            | 109.5       |
| C4—C3—C2        |               | 120.8 (2)   | H          | H11A—C11—H11B |            | 109.5       |
| C4—C3—H3        |               | 119.6       | (          | С10—С11—Н11С  |            | 109.5       |
| С2—С3—Н3        |               | 119.6       | H          | H11A—C11—H11C |            | 109.5       |
| C3—C4—C5        |               | 119.4 (2)   | H          | H11B—C11—H11C |            | 109.5       |
| C3—C4—H4        |               | 120.3       | (          | C13—C12—C15   |            | 106.57 (16) |
| С5—С4—Н4        |               | 120.3       | (          | C13—C12—C7    |            | 113.03 (16) |
| C4—C5—C6        |               | 120.2 (2)   | (          | C15—C12—C7    |            | 112.55 (16) |
| C4—C5—H5        |               | 119.9       | (          | С13—С12—Н12   |            | 108.2       |
| С6—С5—Н5        |               | 119.9       | (          | C15—C12—H12   |            | 108.2       |
| C5—C6—C1        |               | 121.58 (19) | (          | С7—С12—Н12    |            | 108.2       |
| С5—С6—Н6        |               | 119.2       | (          | D3—C13—C14    |            | 121.6 (2)   |
| C1—C6—H6        |               | 119.2       | (          | D3—C13—C12    |            | 119.19 (18) |
| C1—C7—C12       |               | 112.74 (16) | (          | C14—C13—C12   |            | 119.09 (17) |
| C1—C7—C8        |               | 109.58 (15) | (          | C13—C14—H14A  |            | 109.5       |
| C12—C7—C8       |               | 109.89 (15) | (          | C13—C14—H14B  |            | 109.5       |
| С1—С7—Н7        |               | 108.2       | ŀ          | H14A—C14—H14B |            | 109.5       |
| С12—С7—Н7       |               | 108.2       | (          | C13—C14—H14C  |            | 109.5       |
| С8—С7—Н7        |               | 108.2       | H          | H14A—C14—H14C |            | 109.5       |
| С9—С8—С7        |               | 110.65 (15) | H          | H14B—C14—H14C |            | 109.5       |

| С9—С8—Н8А    | 109.5        | O4—C15—C16      | 121.6 (2)    |
|--------------|--------------|-----------------|--------------|
| С7—С8—Н8А    | 109.5        | O4-C15-C12      | 121.10 (18)  |
| С9—С8—Н8В    | 109.5        | C16—C15—C12     | 117.33 (19)  |
| С7—С8—Н8В    | 109.5        | C15—C16—H16A    | 109.5        |
| H8A—C8—H8B   | 108.1        | C15—C16—H16B    | 109.5        |
| O1—C9—O2     | 124.06 (18)  | H16A—C16—H16B   | 109.5        |
| O1—C9—C8     | 124.11 (18)  | C15—C16—H16C    | 109.5        |
| O2—C9—C8     | 111.82 (16)  | H16A—C16—H16C   | 109.5        |
| O2-C10-C11   | 110.33 (17)  | H16B—C16—H16C   | 109.5        |
| O2-C10-H10A  | 109.6        | C9—O2—C10       | 116.13 (15)  |
| C6—C1—C2—C3  | -0.4 (3)     | C1—C7—C12—C13   | -54.2 (2)    |
| C7—C1—C2—C3  | 177.12 (18)  | C8—C7—C12—C13   | -176.77 (16) |
| C1—C2—C3—C4  | -0.7 (3)     | C1—C7—C12—C15   | -175.02 (18) |
| C2—C3—C4—C5  | 1.0 (3)      | C8—C7—C12—C15   | 62.4 (2)     |
| C3—C4—C5—C6  | -0.3 (3)     | C15—C12—C13—O3  | -102.9 (2)   |
| C4—C5—C6—C1  | -0.8 (3)     | C7—C12—C13—O3   | 132.96 (18)  |
| C2-C1-C6-C5  | 1.1 (3)      | C15—C12—C13—C14 | 73.9 (2)     |
| C7—C1—C6—C5  | -176.43 (18) | C7-C12-C13-C14  | -50.2 (2)    |
| C2-C1-C7-C12 | 122.1 (2)    | C13—C12—C15—O4  | -93.4 (2)    |
| C6-C1-C7-C12 | -60.5 (2)    | C7-C12-C15-O4   | 31.0 (3)     |
| C2—C1—C7—C8  | -115.2 (2)   | C13—C12—C15—C16 | 85.4 (2)     |
| C6—C1—C7—C8  | 62.2 (2)     | C7-C12-C15-C16  | -150.14 (18) |
| C1—C7—C8—C9  | 58.7 (2)     | O1—C9—O2—C10    | -0.5 (3)     |
| С12—С7—С8—С9 | -176.91 (16) | C8—C9—O2—C10    | 178.60 (17)  |
| С7—С8—С9—О1  | 55.4 (3)     | C11—C10—O2—C9   | -103.9 (2)   |
| C7—C8—C9—O2  | -123.67 (17) |                 |              |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|--------------------------------------------------------------|-------------|--------------|--------------|---------|
| C6—H6···O1 <sup>i</sup>                                      | 0.93        | 2.63         | 3.534 (2)    | 165     |
| C8—H8B···O1 <sup>i</sup>                                     | 0.97        | 2.70         | 3.525 (2)    | 144     |
| C12—H12···O1 <sup>i</sup>                                    | 0.98        | 2.46         | 3.387 (2)    | 157     |
| C14—H14C····O4 <sup>ii</sup>                                 | 0.96        | 2.72         | 3.405 (2)    | 129     |
| Symmetry codes: (i) $r+1 = v = 7$ ; (ii) $-r+2 = v+1 = -7+1$ |             |              |              |         |

Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+1.







